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Abstract

A geometrical e�ective thermal conductivity model of a saturated porous metal foam was developed, based on the
idealized three-dimensional basic cell geometry of a foam, the tetrakaidecahedron. This geometric shape results from
®lling a given space with cells of equal size yielding minimal surface energy [1]. The foam structure was represented

with cylindrical ligaments which attach to cubic nodes at their centers. The relative geometrical lengths were
calibrated with experiments [2]. It was found that the model estimated the e�ective thermal conductivity very well
for these experimental con®gurations. It was shown that changing the ¯uid conductivity has a relatively small e�ect

on increasing the e�ective thermal conductivity. For an aluminum foam (k = 218 W mÿ1 Kÿ1) with 95% porosity
in vacuum, the three-dimensional model predicted a ke� of 3.82 W mÿ1 Kÿ1. Using air as the saturating ¯uid (k=
0.0265 W mÿ1 Kÿ1) increased the thermal conductivity to 3.85 W mÿ1 Kÿ1, and water (k = 0.613 W mÿ1 Kÿ1)
increased the thermal conductivity to 4.69 W mÿ1 Kÿ1. This shows that despite the high porosity of the foam, the
heat conductivity of the solid phase controls the overall e�ective thermal conductivity to a large extent, a fact that
must be dealt with in the foam manufacturing process if speci®c ranges of the foam e�ective conductivity are
desired. It also implies that an accurate representation of the contribution of the solid portion of the foam to the

e�ective thermal conductivity is needed in e�ective conductivity models. Detailed expressions for the foam e�ective
thermal conductivity were derived in the course of this work and are reported in this paper. 7 2001 Published by
Elsevier Science Ltd.
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1. Introduction

Analytical approximations for the e�ective thermal

conductivity in a stagnant ¯uid ¯ow condition in one

direction has been sought ever since the ®rst investi-
gations in the ®eld of porous media by Maxwell [3]

and Lord Rayleigh [4]. The value of the e�ective ther-
mal conductivity of porous media proves to be useful
in heat transfer applications ranging from soil and

gravel layers, to foam insulation, and recently, to the
novel application of open celled metal foam heat
exchangers, which constitutes the focus of this work.

The complexity of the geometry encountered in the
foam, along with the large di�erence in thermal con-
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ductivity between the ¯uid and solid phases, present a

challenge in approximating the heat transfer coe�cient
compared to previous work done mainly with particles
in a packed bed [5±8].
The value of the thermal conductivity in the solid±

¯uid composite is required in the numerical modeling
of forced convection through porous media [7]. Hunt
and Tien [9] used an empirical stagnant conduction

model developed by Tien and Vafai [10] to de®ne the
e�ective thermal conductivity in the volume averaged
homogeneous energy equation. Antohe et al. [11] also

required the use of an empirical phase symmetry con-
duction that was developed by Hsu et al. [12] to create
a numerical model for the simulation of cooling micro

heat exchangers. The origins of the phase-symmetry
conduction model by Hsu et al. [12] are based upon
the original work done by Zehner and Schlunder on
packed beds of spheres [13].

A ®rst order estimate of the e�ective thermal con-
ductivity of a ¯uid ®lled porous media can be made by
simply accounting for the volume fraction of each sub-

stance, giving the resulting relation based on the poros-
ity and the thermal conductivity of each substance.

keff � ekf � �1ÿ e�ks �1�

This equation, however, does not account for natural

convection between the solid to the ¯uid phases, con-
tact resistance between packed particles or cells, radi-
ation, or distinct structural features. The stagnant
models that have been previously developed required

some additional assumptions concerning the behavior
of the heat ¯ow through the composite medium and
the porous medium itself. These include:

1. The porous medium is uniform, or the porosity vari-
ation can be accurately calculated.

2. Natural convection and radiation heat transfer

e�ects inside the porous medium can be neglected.
3. The physical properties of the solid and ¯uid phases

remain constant throughout the temperature range.

4. The solid and ¯uid phases are in local thermal equi-

librium.

Assumption No. 4 is a pivotal measure that is

taken to enable one energy equation to be used

later in the volume averaging technique utilized in

the numerical studies of the forced convection cases

[14]. This actually allows a very small temperature

di�erence between the two phases, or equivalently,

comparable local temperature gradients [15]. Amiri

and Vafai [16] have performed an extensive study

into the validity of the local thermal equilibrium

assumption. They found that the quality of this

assumption for a packed bed of spheres diminished

as the Darcy number and the particle Reynolds

number increased. In other words, the local thermal

equilibrium assumption works best, as perhaps

expected, with slow moving or stagnant ¯ows which

are commonly found in porous media with relatively

low permeabilities.

In a con®guration with a low solid volume frac-

tion and order of magnitude di�erences between the

thermal conductivities of the two phases, the key in

estimating the e�ective thermal conductivity is an

accurate description of the geometry of the solid

medium [17]. This technique was done successfully

for a packed bed of spheres by Zehner and Schlun-

der [13]. They de®ned a unit cell consisting of one

eighth of a cube centered around a solid sphere

with the edge length equal to half the distance

between the centers of the spheres. They assumed

heat conduction in one dimension along two parallel

paths; one path is the outer concentric cylinder and

the other is the inner cylinder. The inner cylinder

has a diameter equal to the diameter of the spheri-

cal particle and is composed of both ¯uid and

solid, while the outer cylinder is purely ¯uid.

A recent advancement in the estimation of the e�ec-

tive thermal conductivity speci®cally for a metallic

foam saturated with a ¯uid utilizing a geometrical esti-

Nomenclature

a foam ligament radius (m)
d dimensionless foam ligament radius
e dimensionless cubic node length

k thermal conductivity (W mÿ1 Kÿ1)
L ligament length (m)
R simpli®cation quantity (Wÿ1 m K)

r cubic node length (m)
V volume (m3)

Subscripts
A unit cell subsection

B unit cell subsection
C unit cell subsection
D unit cell subsection

e� e�ective
f ¯uid
n A, B, C, D

s solid

Greek symbol

e porosity
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mate was developed by Calmidi and Mahajan [2]. In

this work, a basic, two-dimensional structure of a met-

allic foam was modeled by a hexagonal honeycomb

shape using squares as the geometrical representation

of the nodes. In the honeycomb shape, the thickness

and length of the ligaments joining the nodes were

adjustable, in addition to the length of the edge of the

square node. In a representative cell section, distinct

layers in the vertical (heat conducting) direction were

de®ned based on characteristics of the geometry. The

e�ective thermal conductivity was determined for each

geometrical section directly through a macroscopic

volume averaging procedure based on the porosity,

similar to that, which yielded Eq. (1). After the ther-

mal conductivity was obtained for each layer, the over-

all e�ective thermal conductivity for the representative

unit cell was calculated by summing the layer resist-

ances in series. To accurately represent the true e�ec-

tive thermal conductivity, the equation had to be

calibrated through experimentation to determine the

relative length and thickness of the ligaments to the

size of the square nodes.

Based on the encouraging results of such a two-

dimensional conduction model, as well as on the fact

that an accurate representation of the metal foam ge-
ometry is of importance for the estimation of the e�ec-

tive thermal conductivity, we extend in this paper the
idea of one-dimensional heat conduction in a two-
dimensional foam structure [2] to the markedly more

complex three-dimensional structure, which real metal
foams possess. This is the incentive behind the present
work. After the determination of a three-dimensional

foam representation, the e�ective heat transfer coe�-
cient of the saturated solid was obtained by a detailed
layer-averaging scheme that is a three-dimensional gen-

eralization of that of Calmidi and Mahajan [2].

2. Foam geometry

The ®rst task required that the foam geometry in
three dimensions be well de®ned. This problem entails

describing the space ®lling arrangement of cells of
equal size with the minimal surface energy. The struc-
ture that accomplishes this, which has been accepted

for the past 100 years is that of the tetrakaidecahedron
(Fig. 1a). This complete cell which consists of six
squares and eight hexagons was ®rst published in Phi-

Fig. 1. (a) The tetrakaidecahedron modeled with cylindrical ligaments and cubic nodes. The Cartesian coordinate system is shown

for the clari®cation of the projected unit cell displayed in (b). The labeled nodes (1±4) correspond to the respective nodes labeled in

(b). The unit cell is shown on the right as a solid block located in a single tetrakaidecahedron cell. (b) The geometrical breakdown

of the unit cell of the tetrakaidecahedron. The thick lines denote the solid surfaces within the unit cell. Points 1±4 correspond with

(a) to describe the projection onto the y±z plane. (c) Single tetrakaidecahedron cell in an aluminum foam.
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Fig. 1 (continued)
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losophical Magazine in 1887 by Lord Kelvin [1]. The
tetrakaidecahedron is the idealized shape that will

most likely be attained in the foam from the nature of
the foaming process [18]. When the aluminum is in its
molten state during manufacturing, foaming gas is

injected into the molten slurry causing bubble for-
mation. These gas bubbles are free to move around
and pack themselves into a given space following a

tendency to attain a natural state of lowest surface
energy, while the liquid accumulates at the edges of the
bubbles, forming the ®nal foam structure. The actual

components of the foam network were represented
geometrically in the three-dimensional model by cubi-
cal nodes and cylindrical ligaments. The length of the
cubic node was denoted by r, while the ligament was

de®ned by its length, L, and the radius of its cross sec-
tion, a (Fig. 1b). A magni®ed tetrakaidecahedron
photographed from a real aluminum foam is shown in

Fig. 1c.

3. Model development

3.1. Porosity

Taking the cells in their connected state, a represen-
tative section was selected based on symmetry. This
encapsulates one sixteenth of a single tetrakaidecahe-

dron cell (Fig. 1b). This representative section contains
all the geometrical characteristics relating to the tetra-
kaidecahedron. In this section, discrete layers were

de®ned based on distinct geometrical features. The
height of the rectangular unit cell in the z direction
(Fig. 1b) is

L

���
2
p

2
�2�

with the two other sides of the rectangular unit cell in
the x±y plane being

L
���
2
p

�3�
where L is the length between node centers in the tet-
rakaidecahedron. Two other variables (a and r ) break
up the unit cell into four distinct vertical layers
(Fig. 1b). From the top with respect to the z axis, the

height for the ®rst section, A, is a, because half of the
cylindrical ligament belongs to the unit cell and the
other half to the cell located above it. Proceeding

downwards to section B, the next descriptive height is
the quantity r/2ÿa, described by the di�erence between
half the node side length and the ligament radius.

Moving directly to the bottom section D, the height is
simply represented by half the side length of the cubic
node, r/2. The height for the ®nal section C is given by

the di�erence of the remaining height and the total
unit cell's height projected onto the y±z plane (Eq.

(2)).

L

���
2
p

2
ÿ r �4�

Having the heights de®ned for these four sections,
the total volume for each rectangular section is calcu-

lated simply by multiplying the unit cell's area in the
x±y plane by the z height of the individual sections (A,
B, C, D) to give the following volumes.

VA � 2aL 2 �5�

VB � �rÿ 2a�L 2 �6�

VC � 2

�
1

2
L

���
2
p
ÿ r

�
L 2 �7�

VD � rL 2 �8�

A simpli®cation can be made by using the following

non-dimensional relationships.

d � a

L
�9�

e � r

L
�10�

The next step is calculating the volume occupied by
the solid for each layer using the dimensionless d and e

variables.

VA,s �
�
e 2 � 1

2
dp�1ÿ e�

�
dL3 �11�

VB,s �
�
1

2
eÿ d

�
e 2L3 �12�

VC,s �
ÿ
1ÿ 2e

���
2
p �

pd 2L3 �13�

VD,s � 1

4
e3L3 �14�

Having these relationships, the porosity can be esti-
mated on the basis of d and e.

e � 1ÿ
���
2
p

2

�
de 2 � 1

2
pd 2�1ÿ e� �

�
1

2
eÿ d

�
e 2

� pd 2
ÿ
1ÿ 2e

���
2
p �
� 1

4
e3
�

�15�
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The variables e and d need to be eliminated to
obtain the ultimate goal, the e�ective thermal conduc-

tivity as a function of the material properties and the
porosity. Solving Eq. (15) for an arbitrary porosity, e,
yields a quadratic solution for d, which is used later

for the e�ective thermal conductivity.

d �
������������������������������������������������������
2
p ÿ

2ÿ �5=8�e3 ���
2
p ÿ 2e

�
p
ÿ
3ÿ 4e

���
2
p ÿ e

�s
�16�

Fig. 2. Plot of ke� for various porosities and dimensionless e values for calibration of the three-dimensional model with air against

experimental data [2]. The solid line represents the e value chosen from the calibration procedure. (b) Plot of ke� for various poros-

ities and dimensionless e values for calibration of the three-dimensional model with water against experimental data [2]. The solid

line represents the e value chosen from the calibration procedure.
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3.2. Thermal conductivity

Averaging the thermal conductivity of each section
on the basis of the individual volume fractions and

their respective thermal conductivities is done in the
following manner, as in Eq. (1).

kn � Vn,sks � �Vn ÿ Vn,s�kf

Vn
�17�

This thermal conductivity is calculated for each section

(n = A, B, C, D). The thermal conductivity through
the representative section is calculated based on heat
conduction through a series of four levels using Four-
ier's law of heat conduction to give the relation.

keff � LA � LB � LC � LD

�LA=kA� � �LB=kB� � �LC=kC� � �LD=kD� �18�

Substituting the equations for the section lengths (Ln),

the thermal conductivities for each (kn), and the posi-
tive solution for d from Eq. (16) yields a lengthy
equation for the e�ective thermal conductivity as a
function of the porosity, e, and d (which is a solved

function of e and e from Eq. (15)). Introducing the
simplifying notation

RA � 4d

�2e 2 � pd�1ÿ e��ks � �4ÿ 2e 2 ÿ pd�1ÿ e��kf

�19�

RB � �eÿ 2d � 2
�eÿ 2d �e 2ks � �2eÿ 4dÿ �eÿ 2d �e 2�kf

�20�

RC � ÿ ���
2
p ÿ 2e

� 2
2pd 2

ÿ
1ÿ 2e

���
2
p �

ks � 2
ÿ ���

2
p ÿ 2eÿ pd 2

ÿ
1ÿ 2e

���
2
p ��

kf

�21�

RD � 2e

e 2ks � �4ÿ e 2�kf

�22�

®nally yields the ®nal result of the e�ective thermal
conductivity to be

keff �
���
2
p

2�RA � RB � RC � RD� �23�

4. Results and discussion

This ke� function is plotted for two separate cases.

Aluminum (k = 218 W mÿ1 Kÿ1) is used for the solid

in both cases. In Fig. 2a, air (k= 0.0265 W mÿ1 Kÿ1)
is the saturating ¯uid, and in Fig. 2b, water (k=0.613
W mÿ1 Kÿ1) is the saturating ¯uid. The e value is cali-

brated from these ®gures by comparison of the model
calculations against the experimental data from Cal-
midi and Mahajan [2]. The reason why this process

was selected was to assure a reasonable balance
between the node and ligament sizes and to investigate

the thermal conductivity dependence on the changes in
the relative thickness of the ligaments.
Examining Fig. 2a shows that the best agreement

between the variable e and the available experimental
data for porous aluminum saturated with air is for e

= 0.339. This e�ective geometrical ratio carries over
for the water saturated aluminum medium as well, as
shown by Fig. 2b.

The ratio of the e�ective thermal conductivity to the
¯uid conductivity is calculated and plotted in Fig. 3
for several relationships of ks/kf and porosity using the

value e = 0.339. The calculated e�ective thermal con-
ductivity ratio by the phase-symmetry model of Hsu et

al. [12] is also plotted on the same graph as dashed
lines for comparison.
The e�ect of the ¯uid conductivity at relatively high

porosities (e 0 0.95) on the e�ective thermal conduc-
tivity of the saturated porous medium is of interest

because it aids the selection of the best ¯uid/solid com-
bination. In Fig. 4, the e�ective thermal conductivity
for a ¯uid saturated porous aluminum matrix of 95%

porosity is plotted for a wide range of ¯uid conduc-
tivities from 0.0 to 10.0 W mÿ1 Kÿ1.
Comparing the three-dimensional model to the ex-

perimental data shows that the model follows the
curve of the data points very well in both cases with

air and water as the saturating ¯uids. The calibration
curves that were done for air and water lie directly on
the data points taken from Calmidi and Mahajan [2].

In both cases the closest (and very good) relationship
between the experimental and calculated points, as
shown in Fig. 2b, was achieved for a value of e =

0.339. These results are compared with the values
obtained using the phase-symmetry model developed

by Hsu et al. [12] which are also plotted in Fig. 3 as
dashed lines for various values of ks/kf and the air and
water values. The present three-dimensional geometric

model predicts a lower e�ective thermal conductivity
than the phase-symmetry model throughout the plotted
porosity range for realistic metal to saturating ¯uid

conductivity ratios and solid matrix porosities (e <
0.98), and agrees everywhere with the experiments. At

a lower phase conductivity ratio of ks/kf=100, the pre-
sent three-dimensional model predicts a lower e�ective
thermal conductivity at porosities lower than e=0.965.

For ks/kf=10 the present model predicts a higher ther-
mal conductivity than the phase-symmetry model
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Fig. 3. Plot of the dimensionless thermal conductivities for the three-dimensional model with e = 0.339 and the phase-symmetry

model by Hsu et al. [12] for various ks/kf values plus the air and water cases which are compared to experimental data points [2].

Fig. 4. E�ective thermal conductivity for a saturated porous aluminum medium (k=218 W mÿ1 Kÿ1, e=0.95) by varying the ¯uid

conductivity (kf ).
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across the entire porosity range shown, from e=0.88
to 1.00.

It is useful to observe the e�ects on the e�ective
thermal conductivity while varying the ¯uid conduc-
tivity in order to ®nd an optimal solid±¯uid system. In

Fig. 4 the e�ective thermal conductivity for a saturated
aluminum matrix of e=0.95 is plotted with varying kf
from 0.0 to 10.0 W mÿ1 Kÿ1. Following the plot

where there is nearly a vacuum (kf=0.01 W mÿ1 Kÿ1)
to a kf=0.1 W mÿ1 Kÿ1 shows a nearly negligible
increase in the e�ective thermal conductivity, from

3.82 to 3.95 W mÿ1 Kÿ1, or a 3% increase in ke� for
an order of magnitude increase in kf . Proceeding
another order of magnitude to a thermal conductivity
value of kf=1.0 W mÿ1 Kÿ1 shows a larger change in

the e�ective thermal conductivity from 3.95 to 5.24 W
mÿ1 Kÿ1, or an increase of 33%. Continuing to
increase the ¯uid conductivity all the way to kf=10.0

W mÿ1 Kÿ1 shows a relatively large increase in e�ec-
tive thermal conductivity to 16.7 W mÿ1 Kÿ1, or an
increase of 220% in ke� for an increase in ¯uid con-

ductivity of one order of magnitude. However, only
non-conventional ¯uids, such as liquid mercury, pos-
sess such a thermal conductivity. Restricting the dis-

cussion to practical ¯uids like water or ethylene glycol
where kf < 1.0 W mÿ1 Kÿ1, these changes in e�ective
thermal conductivity values reveal that relatively mini-
mal gains are made in increasing ke� when the solid to

¯uid conductivity ratio is high. Increasing the thermal
conductivity of the solid phase is required for any dra-
matic improvement in the e�ective thermal conduc-

tivity of the composite system.

5. Conclusion

A one-dimensional heat conduction model for use
with open celled metallic foams was developed based
on a three-dimensional description of the foam geome-

try. This detailed description of the foam geometry
allows the e�ective thermal conductivity to be calcu-
lated accurately. The three-dimensional model ®ts the

experimental data [2] very well and performs better
than the phase-symmetry model for the parameter
ranges typically experienced in metal foams. Because
of the accurate curve prediction, this model may lend

itself well into applicability in the lower porosity
regimes (e<0.90).
The three-dimensional model demonstrated that for

metal foams in which the solid conductivity is mark-
edly higher than the ¯uid conductivity improvements
in the overall e�ective thermal conductivity are best

made by increasing the thermal conductivity of the
solid phase through manipulation of the foam solid
structure at the manufacturing phase, since the solid

phase appears to govern the e�ective thermal conduc-
tivity value, even at a very high porosity.
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